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ASPECTS OF FLOW-INDUCED VIBRATION
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Phenomena associated with #ow-induced transverse oscillation of an elastically mounted body
are considered. The use of a recently introduced parameter that combines the e!ect of mass and
elasticity*e!ective elasticity*is exploited to demonstrate the predictive value of the new
approach and to provide insights into solution branching, the maximum amplitude of vibra-
tion, and modeling. ( 2001 Academic Press
1. INTRODUCTION

IN SHIELS, LEONARD & ROSHKO (2001), henceforth SLR, results of numerical simulations were
presented for vortex-induced vibration of a circular cylinder vibrating transversely in
a two-dimensional #ow at Reynolds number Re"100. The single value of Re together with
zero value for the system damping (b"0) were chosen, thus reducing the number of
independent variables to two, namely the mass m and the spring constant k. It was found
that, in a great majority of the cases, the response was essentially sinusoidal. In this
situation, at frequency f"u/2n, the spring force, ky, and inertial force, mu2y, are continual-
ly in opposition, and their net e!ect can be represented by the &&e!ective'' elasticity,
k*
%&&
,k*!m*u*2. The notation ( )* indicates nondimensional forms,

k*,k/1
2

o;2
=
, m*,m/1

2
oD2, u*,uD/;

=
and A*,A/D, (1)

where o and ;
=

are #ow density and velocity, respectively, and D is the cylinder diameter,
i.e., the scaled time is t*"t;

=
/D rather than the traditional q,tu

n
, where u

n
"(k/m)1@2.

Scaling with #ow variables instead of the mechanical ones leads to the single-variable
formulation, which gives a uni"ed solution as function of k*

%&&
. In the traditional formulation,

m* is an independent parameter and the mechanical frequency u
n
appears in the &&reduced

velocity'', ;
R
,;

=
/u

n
D, that is usually adopted as the primary variable. It may also be

writtten ;
R
"1/u*

n
. In Figure 1, we show the results of numerical simulations for the

response of the system A* and f *"x*/2n versus k*
%&&

. The simulations are those reported in
SLR and more recent ones by L. Barba (private communication).

The advantage of a universal solution in terms of a single parameter, k*
%&&

, is that it is not
necessary to make an experimental (computational) run for each value of m*. On the other
hand, the e!ect of mechanical parameters is hidden in the solution. For example, the
phenomena of &&lock-in'' and of multiple branches which are observed in the conventional
coordinates are not obvious. One of the main objectives of this paper is to elucidate the
connection between these phenomena and our uni"ed description.

The universal solution includes the transverse force (&&lift'') on the cylinder which, for
sinusoidal motion, can be expressed as F

y
"C

L
1
2
o;2

=
D sin ut. The coe$cient C

L
may be of
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Figure 1. Response for undamped systems, with and without inertia, plotted against e!ective elasticity: (a)
amplitude A*; (b) frequency f *. Notation: *d*, DS '98; e, LB '99; *] LB '00. Numerical simulations of

SLR (DS '98) and L. Barba (private communication, LB '99; '00).
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interest for modeling. In SLR, the transverse force was decomposed into two components,
C

L
"C

Lw
#C

La
, where C

Lw
is the &&wake'' force due to the e!ect of all the vorticity in the

boundary layer and wake, while C
La

is the &&added-mass'' force induced by the acceleration
of the cylinder. The latter is easily computed for a given frequency and amplitude, i.e.,
C

La
"1

2
nu*2A*. Because of continuing controversy about the applicability of the classical

result for the added mass contribution to the #uid force, we present a review in the
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appendix. More di$cult to understand is the total cross-force C
L

and its component C
Lw

.
For example, it is counter-intuitive that C

L
"0 at the synchronization condition f"f

n
, at

which condition, then, C
Lw

"!C
La

. These aspects of the transverse force are described in
Sections 2 and 3, while the branching solutions associated with the universal solution are
discussed in Section 4.

2. SYNCHRONIZATION AND LOCK-IN

The two terms, synchronization and lock-in, are often used synonymously but in SLR it was
shown that, for zero damping and sinusoidal motion, synchronization ( f"f

n
) occurs at

only one condition, k*
%&&
"0. This follows from

k*
%&&
"k*!m*u*2"m*(u*2

n
!u*2), (2)

which can be rewritten to show

u*2"u*2
n

!k*
%&&

/m*. (3)

That is, for nonzero values of k*
%&&

, u only approaches u
n

asymptotically when m*A1.
Indeed, it is from experiments in air (Feng 1968), for which m*&103, that the traditional
knowledge of &&lock-in'' developed. (Note, in equation (2), that in the range of high-
amplitude response, u*

n
";~1

R
&1 and k*

%&&
(3.) On the other hand, it was from experi-

ments in water [e.g., Khalak & Williamson (1997), Gharib et al. (1997), 1998, Gharib
(1999)], for which m*&1!10, that the notion of &&absence of lock-in'' developed. In such
cases, the plot of f/ f

n
is an increasing function of ;

R
which crosses the ordinate f/ f

n
"1 at

;
R
+1)0. Those values of;

R
for synchronization, at Re&103}104, are remarkably close to

the value from the universal solution f *(k*
%&&

) at Re"100; that is, f *
n
"f *(0),"0)156, from

which ;
R
"(2n f *

n
)~1"1)02.

It is also noteworthy that for large values of m*, for which the synchronization value of
;

R
cannot be readily identi"ed, as noted above, the value ;

R
+1)0 is the point at which

a jump in amplitude is observed from an upper to a lower branch, as ;
R

is increasing. In
some cases (Feng 1968; Brika & Laneville 1993), the jump is hysteretic, i.e., a jump from
a lower to an upper branch, for decreasing ;

R
, is not observed. In other cases (Khalak

& Williamson 1999), the jumps are intermittent rather than hysteretic, perhaps depending
on the mass-damping parameter m*f ("1

2
;
R
b*). The connection with synchronization may

be found in the equation of motion which, for zero damping and sinusoidal motion, as
explained above, reduces to

(!m*u*2#k*)A*"k*
%&&

A*"C
L
. (4)

Thus, C
L
"m*(u*2

n
!u*2)A* is changing sign, i.e., phase, at synchronization. From the

investigations in air (m*<1), it is known that at the hysteretic jump there is a phase change
(n) in vortex shedding. Further discussion on branching is in Section 4.

3. AMPLITUDE AND CROSS-FORCE

To associate the amplitude of vibration A* with the transverse force coe$cient C
L

can be
misleading. Thus, for a stationary cylinder, A*"0 and C

L
"1)30 while for a cylinder

vibrating at high amplitude C
L

may have the value zero (at k*
%&&

"0, where A*"0)47!)
Figure 2(a) shows the overall relation between C

L
and A*. The components of C

L
, i.e., the

added-mass component C
La

and the wake component C
Lw

, are shown in Figures 2(b) and
2(c), respectively. Clearly, the relations are not simple. The plot for the wake force is
especially interesting, showing a large change of C

Lw
, from negative to positive values, at



Figure 2. Components of the lift coe$cient, C
L
"C

La
#C

Lw
: (a) C

L
; (b) C

La
; (c) C

Lw
. Notation: s k*

%&&
(0;

f k*
%&&
'0; , k*

%&&
"0. Numerical simulations of SLR.
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nearly constant amplitude, A*+0)58. Surprisingly, as noted in SLR, that change is
accompanied by barely perceptible change in the pattern of separation and vortical
structure in the wake.

4. BRANCHING OF SOLUTIONS

In this section, we discuss the discontinuous or branching behavior often observed when
following the amplitude of the response as the reduced velocity is varied continuously; see,
e.g., Khalak & Williamson (1999). In particular, we show how this behavior is connected to
our uni"ed description.

As shown in Figure 1, the frequency, f *, and amplitude, A*, of the response will depend
only on the e!ective sti!ness, k*

%&&
"k*!m*u*2, the nondimensional damping, b*, and the

Reynolds number, Re, i.e.,

f *"f *(k*
%&&

, b*, Re), A*"A*(k*
%&&

, b*, Re), (5, 6)

assuming that the motion is nearly sinusoidal. Given the functions (5) and (6), consider now
determining the response for a given experiment. For a "xed mechanical and #uid system,
m* is "xed but k*, b*, and Re vary as the freestream velocity, ;

=
, varies. If we then also "x

;
=
, then we need only to solve equation (5) implicitly for f * or u*2"4n2 f *2. To do so let

u*2"F(k*
%&&

, b*, Re). (7)

Then

k*
%&&
"k*!m*u*2"k*!m*F(k*

%&&
, b, Re). (8)

Thus

m*F(k*
%&&

, b*, Re)#k*
%&&
"k*"

m*

;2
R

, (9)

and so k*
%&&

may be determined from (9) and then f * or u*2 may be found from equations (5)
or (7), respectively, and A* from (6). (An alternative procedure to do this inversion was
presented in SLR in which one begins with chosen m* and k*

%&&
and then determines the

corresponding A*, f * and ;
R
. However, using this method it is not convenient to

demonstrate branching behavior and one also has accuracy problems at large m* as
discussed by SLR.)

However, equation (9) may produce multiple solutions for k*
%&&

. Consider the data
produced by computational experiments of SLR for b*"0 and Re"100. Using the results
shown in Figure 1, we show in Figure 3 the left-hand side of equation (9) versus k*

%&&
for the

case m*"2. Note that, in this case, any value of;
R

will produce a unique value k*
%&&

, i.e., no
multiple solutions. On the other hand, as m* increases the importance of the nonlinear (in
k*
%&&

) "rst term on the left-hand side of equation (9) increases. For example the case m*"28
is shown in Figure 4. Note that in the range 364m*/;2

R
446 or 0)784;

R
40)88 three

solutions may be possible. As illustrated in the "gure, the one corresponding to the largest
k*
%&&

would have the lowest amplitude [see Figure 1(a)] and therefore belong to the &&lower''
branch and the smallest k*

%&&
would correspond to the highest amplitude or &&upper'' branch.

A third or intermediate solution could possibly fall in the range 24k*
%&&
44 but it is

approximately within this range that the response has been found to be nonsinusoidal as
indicated in the "gure. Branching for this case (m*"28) is seen to occur also in the range
164m*/;2

R
425 or 1)064;

R
41)32 and corresponds to the branching discussed in

Section 3, connected with the condition k*
%&&
+0. In this regime the largest solution for



Figure 3. m*u*2#k*
%&&

or m*/;2
R

plotted against e!ective elasticity for the case m*"2.0: s, DS, m"0; d, DS,
mO0; e, LB '99; n, LB '00. Numerical simulations of SLR and L. Barba (private communication).

Figure 4. m*u*2#k*
%&&

or m*/;2
R

plotted against e!ective elasticity for the case m*"28.0: s, DS, m"0; ,
DS, mO0; e, LB '99; n, LB '00. Numerical simulations of SLR and L. Barba (private communica-

tion).
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k*
%&&

(i.e., k*
%&&
+0) would correspond to the largest amplitude A* while the intermediate

solution for k*
%&&

would yield, in general, a signi"cantly smaller amplitude. A third solution
also exists for a larger negative value of k*

%&&
, because the left-hand side of equation (9) tends

to k*
%&&

as k*
%&&

becomes large negative, but the corresponding amplitude would be even
smaller.



Figure 5. Amplitude plotted against reduced velocity for m*"2)1. From the value;
R
"1: b*"0)31, k*"m*,

and Re"32]103. Experiments of Gharib (1999).
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This type of discontinuous or branching behavior is also found in the laboratory
experiments of Gharib (1999), depending on the value of m*. In Figure 5, we show the
response A* versus ;

R
, for the case m*"2)1. A* appears to vary smoothly, in agreement

with the behavior inferred for the computational case, m*"2, from Figure 3. However,
a di!erent result occurs for the case m*"28, as shown in Figure 6. Note the nearly
discontinuous behavior at;

R
+0)86 and possible branching near;

R
+1)05. The source of

this behavior is clear when we consider the variation of m*F(k*
%&&

, b*, Re)#k*
%&&

as a function
of k*

%&&
for this data, shown in Figure 7. The jump in amplitude at;

R
+0)86 is a consequence

of the #atness of the curve in the range 44k*
%&&
46 and the fact that A* is a rapidly varying

function of k*
%&&

in this range (see Figure 8). The drop to low A* at ;
R
+1)05 is simply the

change in solution branch as m*/;2
R

decreases through the value +25.
In the laboratory experiments ("xed m* but ;

R
variable) some variation in b* and Re

takes place because b*&;~1
R

and Re&;
R
. [For the case m*"2)1 above, b*"0)31 and

Re"32]103 at;
R
"1 and, for the case m*"28, b*"0)39 and Re"23]103 at;

R
"1

(Gharib 1999).] Thus, the data shown in Figure 7 are not at "xed b* and Re, but include
some variation in both parameters while the data of Figures 3 and 4 are at "xed b*"0 and
Re"100. Of course, equation (9) is valid in either case but its use in the case of varying
b* and Re may require some additional iteration.

5. REMARKS

We have developed further insights into the phenomena of #ow-induced vibration by
exploiting a uni"ed description of the response of the system, presented in a recent paper by
SLR. In this approach, the e!ective elasticity, k*

%&&
, and damping, b*, replace three traditional



Figure 6. Amplitude plotted against reduced velocity for m*"28)0. For the value ;
R
"1, b*"0)39, k*"m*,

and Re"23]103. Experiments of Gharib (1999).

Figure 7. m*u*2#k*
%&&

or m*/;2
R

plotted against e!ective elasticity for the case m*"28)0. Same experiment as
in Figure 6.
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parameters, mass ratio, m*, reduced velocity, ;
R
, and mass damping, m*f for transverse

oscillations of an elastically mounted body. Body geometry and Reynolds number remain
as additional parameters in either case.

As noted in SLR, the results of a traditional experiment performed at a given m* may be
used to predict the results for other m*. This is so because, in a given experiment in which



Figure 8. Amplitude plotted against e!ective elasticity for m*"28)0. Same experiment as in Figure 6.
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;
R

is varied, the unifying parameter

k*
%&&
"k*!m*u*2"m*/;2

R
"m*u*2 (10)

also takes on all values of interest. In particular, we have shown that the branching of
solutions, often observed in traditional experiments, is a consequence of the response
frequency dependence on k*

%&&
, which itself is dependent on the response frequency. For the

limited computational and experimental data we have considered in this paper branching
behavior is predicted and observed to occur only at higher m*. The response, A* versus;

R
,

is smooth at low m*. This result appears to be at odds with the branching observed by
Khalak & Williamson (1997) for m*"2)4(n/2)"3)7 but could be due to e!ects of Reynolds
number.

The possibility of formulating a uni"ed description of the response, in terms of one
parameter, k*

%&&
, was facilitated by setting the damping b* equal to zero in the numerical

simulations, thereby ensuring that the spring and inertial forces are in line. A few simula-
tions (in SLR) over a range of "nite b* show, not surprisingly, that amplitude is reduced
(dA*/db*K!0)3 for b*;1). Thus, the maximum value of amplitude for the uni"ed
solution, A*"0)59 [Figure 1(a)], must be the maximum value for any combination of
parameters, at Re"100!

The relation of b* to the conventional damping coe$eient f is given by b*"2m*f/;
R
,

i.e., it is equal to about twice the &&mass-damping parameter'' m*f (since ;
R
&1) that has

been used to determine maximum values of amplitude, starting with investigations by
Gri$n & Ramberg (1982). Indeed, A*PA*

.!9
for b*P0, as found by those and other

investigators. The maximum value of amplitude, however, depends on Reynolds number.
This is evident from the result of Khalak & Williamson (1997, 1999) and of Gharib (1999);
values of A* as high as 1)2 have been observed.

Among the issues that need further investigation is that of modeling vortex-induced
vibration. It seems that modeling e!orts could bene"t by considering the uni"ed description
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presented in this paper and SLR. But it will still be a challenging task given, e.g., the
counter-intuitive relation between amplitude and transverse force coe$cient discussed
above. Another item that needs further consideration is nonsinusoidal response and how
such a response might be considered within the framework of the uni"ed description. As
noted above, aperiodic behavior does occur under certain conditions. In the computational
study, for example, the response becomes modulated in what would be the range,
3(k*

%&&
(5.
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APPENDIX: ADDED MASS

The &&apparent'' or &&added mass'' of an accelerating body is equal to the reactive force which
the body exerts on the #uid in which it is immersed divided by the acceleration. Alterna-
tively, it is equal to the impulse given to the #uid during an incremental change of body
velocity divided by that incremental velocity. For the circle (cylinder in two-dimensional
#ow) or sphere, the impulse is aligned with the velocity change, but not in general, and then
the ratio of impulse to velocity, i.e., the apparent mass, is a tensor quantity. These properties
are well known from textbook derivations which are usually obtained for irrotational #ow
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and so it is not as well known that the resulting de"nitions are applicable more generally,
e.g., in separated #ows such as those that occur in problems of #ow-induced vibration. As
a result, empirical relations are sometimes introduced into models, unnecessarily. This
assertion perhaps becomes obvious on noting that, in incompressible #ow, an incremental
velocity *< instantaneously generates a potential velocity "eld, proportional to *<, which
is superimposed on the existing velocity "eld, whatever that may be, and that is why the
conventional derivation based on irrotational #ow is successful. But an alternative deriva-
tion, which addresses the vorticity "eld explicitly, may be more convincing. Here, we derive
the result speci"cally for a circular cylinder.

The force F
b
on the cylinder in two-dimensional #ow can be calculated from the following

relation (Koumoutsakos & Leonard 1995):

F
b
"o

d

dt P
&-6*$

x 3 x dA#oA
B

dU

dt
. (A.1)

[in equation (21) of Koumoutsakos & Leonard, the sign of the "rst term is incorrect.] Using
polar coordinates (r, h), with origin at the center of the circle and h measured from the
direction of acceleration, d</dt, the force F in that direction is

F"

d

dt P
=

a
P

2n

0

ru
z
sin hr drdh#ona2

d<

dt
. (A.2)

Vorticity is found only in the boundary layer and wake of the body. Unsteadiness of that
vorticity results in unsteadiness of F, even if the body is stationary. However, independently,
during acceleration new vorticity is generated at the surface of the body, and instantaneous-
ly creates a potential velocity "eld as noted above; its contribution to the force integral is
the only contribution connected with the body acceleration and it uniquely de"nes the
added mass. This contribution to the integral in equation (A.2) may be evaluated by noting
that the new vorticity is contained in a singular layer whose strength
c(h)"limd?0

:a`d
a

r2u
z
dr"limd?0

: r2 (!Luh/Lr) dr"a2(!2*< sin h). The last term in
parenthesis is the velocity along the cylinder surface (i.e., at the edge of the singular vorticity
layer) due to an incremental velocity *< of the cylinder. Using this in equation (A.2) to
complete the evaluation of the integral, we get

F"!2ona2
d<

dt
#ona2

d<

dt
"!ona2

d<

dt
. (A.3)

(Note that for a stationary body [;
b
"0 in equation (A.1)] in an accelerating stream, the

result will be F"!2ona2 d</dt.)
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